
KL/TV Resampling: Statistical Distance 
Based Offspring Selection in SMC Methods

The research interest in combining the variational 
inference (VI) and sequential Monte Carlo (SMC) 
methodologies is rapidly increasing, especially in domains 
allowing for model parameter learning via amortized VI [1, 

2, 3]. Yet, utilizing VI in order to directly design 
resampling/offspring selection schemes – one of the 
defining elements of particle filters (PFs) – has, to the best 
of our knowledge, received little attention so far.

In light of this, we propose two novel offspring selection 
schemes which multiply/discard particles in order to 
minimize the Kullback-Leibler (KL) divergence or the 
total variation (TV) distance with respect to the real-
valued particle distribution (prior to resampling). The 
reference distribution can either be the rational-valued 
particle distribution (post resampling), or the model’s target 
distribution. By regarding offspring selection as a 
problem of minimizing statistical distances, we further 
bridge the gap between optimization-based density 
estimation and SMC theory.

Our proposed methods outperform or compare 
favourably with the multinomial, systematic and stratified 
resampling schemes on common density-estimation 
benchmark datasets in terms of estimating the true 
sequence of latent variables via the resulting smoothing 
density.

We are interested in approximating the intractable 
posterior                     , where         and        are sequences 
of latent variables and observations of length    , 
respectively.

To do this, we employ a PF which provides an 
approximation of the posterior in the form of a particle 
distribution

Above we let     denote the number of particles, 
as the Dirac distribution with mass in         and       the 
normalized importance weight of particle    at time   . 
We obtain        by normalizing the unnormalized 
importance weight

over the    particles. In the above equation we note that the 
ratio between the model’s target distribution and the 
proposal density is not multiplied by       as the focus of our 
study is on the case where resampling occurs at every time 
step. Finally,     is the index of the   th particle’s ancestor.

Let             be the variational distribution and             be 
the reference distribution we wish to approximate. 
Then the KL divergence is defined as

The KL divergence is non-negative, and zero if and only 
if                            . Although             might be intractable, 
minimizing                                  is apparently equivalent 
to maximizing the evidence lower bound (ELBO)

where             is tractable.

Let     and     be discrete conditional probability measures 
on    , then the TV distance is defined as

Let the variational distribution be the rational-valued 
particle distribution, then we get

The multiplicities that maximize the ELBO constitute the 
rational-valued particle distribution that we use post 
resampling. In Algorithm 1,                              .

Here we let the reference distribution be the normalized 
real-valued particle distribution, and aim to choose 
.                    such that we minimize

The multiplicities that minimize the TV distance form the 
rational-valued particle distribution that we use post 
resampling. In Algorithm 2,               .

Here we consider the stochastic volatility (SV) model

where       and      are random variables following the 
standard normal distribution. All experiments are averaged 
over five random seeds and we fixed               . 

In order to estimate the true (generating) latent variable     , 
we use the expected value, the median and the mode of the 
smoothing density                   .

Resampling, or offspring selection, is a methodology for 
discarding less promising particles in favour of particles 
which we wish to multiply. Designing resampling methods 
means modeling this selection process. Namely, we should 
decide how to choose the rational-valued particle 
distribution

where       is the multiplicity of particle   , given the real-
valued particle distribution

As an example, in multinomial resampling this is done by 
first normalizing                      and then sampling    
offspring indices from the resulting categorical distribution 
with replacement.
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