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Motivation

e To overcome the curse of dimensionality of the
particle filter (PF), the block PF (BPF)
proposed by Rebeschini and Van Handel |1
consists in partitioning the state space into
several blocks of smaller dimension.

e But the authors provide no method to decide
how to split the state space into blocks. This
work is an attempt to fill this gap.
= We propose a partitioning method
to provide a relevant partition to use

in the BPF.

Block particle filtering |1]

A blocking step is inserted between the prediction
and correction steps of the usual bootstrap PF.

e Partition into K blocks:
XtT — [lexg:Q . .XZK]
where x; 1 = {x4(¢) : © € Bi}. The subsets of
indexes { By}, verify: Ul B, = {1 :d,} and
BN By =0, Vk #£K.

e Approximation of the KX marginal
densities of each block using local
weights:

The correction and resampling steps are
performed independently on each block.

e Approximation of the joint filtering
distribution by the product of the
marginal densities.

Bias and variance of the filtering distribu-
tion estimate:

e The variance is reduced using blocks of small
dimension.

e But a bias is introduced by the approximation
itself and by breaking inter-block correlation
(especially at boundaries).

= How to partition the state space ?

State space partitioning based on constrained
spectral clustering for block particle filtering
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A new state space partitioning
method for block particle filtering

Objective: To mitigate the correlation loss due to
the blocking step, the aim is to bring together in the
same blocks the most correlated state variables.

Principle of our method: The state space par-
titioning problem in the BPF is revisited as a clus-
tering problem:

e State variables are seen as data points,
e Clusters are blocks,

e Correlation among variables is used to quantify
similarity between data points.

Introduction of two new steps in the BPF':

o Estimation of the state vector
correlation matrix
The N, predicted particles provide an unbiased
estimator of the covariance matrix of the
predictive posterior pdf p(x¢|y1.+-1):

. I Ny A T
Ex,t — Np — 1251 (Xg ) — Xt) (Xg ) — Xt) ]
where:
1 N, (0
Xt = 7 20Xy
Np 1=1

Then the correlation matrix estimate (A?X,t is
directly derived from 3y ;.

o Constrained spectral clustering for state
space partitioning

Cy is used as similarity matrix for spectral

clustering |2].

A constraint is introduced on the maximal cluster

size to avoid the resurgence of the curse of

dimensionality on blocks.
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Constrained spectral clustering

Spectral clustering (SC) |2] is an unsupervised learn-
ing approach which relies on two main steps: learn-
ing a new representation of the inputs, and then
applying an usual clustering approach on the trans-
formed inputs.

To prevent SC from creating large clusters, we set
an upper bound ¢ on the cluster sizes.

e Compute the normalized symmetric Laplacian

A

Cx,t
e Compute the K eigenvectors uj, uo, ..., ux of
Lsym assoclated to the K smallest eigenvalues.

Lsym from the similarity matrix

e Concatenate these vectors as columns to create
the matrix U € R%*% and normalize the rows of
U to unit norm.

o Get the new points z,(i) € R® from the i*" rows
of U, Vi € |d,].

e Partition the new points {z;(¢)}%, into K
clusters By, ..., B using the K-means algorithm
under the constraint |By| < ¢, Vk € |K]|.

Experiment results 1

We consider a linear Gaussian model:

Xy = Fx; 1+ wy

v, = Hx; + vy
where d, = d, = 100, F=H =1, w; ~ N(0,Q),
vi ~ N(0,I) and Xy ~ N(0,I). The matrix Q
has 10 blocks with different sizes (from 5 to 15) in
the main diagonal and is time-varying. Inside each

block, Q(7, 7) = exp (—(1 — 7)?/100).

BPF MSE | ARI
Known partition 0.8185 /
Random partition (same size blocks) 1.1466) /

Unknown partition ({ = d, / unconstrained SC) 0.8190 0.9938

Unknown partition (¢ = 10 / same size blocks) 0.7067]0.7010

Unknown partition (¢ = 12) 0.7473 0.8701

Unknown partition (¢ = 15) 0.8070 0.9942

Table: Performance of BPFs with 10 blocks and 100 particles.
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Experiment results 2

We consider a Lorenz 96 non-linear model:

dzy(n)
dt (@e(n+1) —2(n —2))z(n — 1) —ay(n) + F

y(n) =x:(2n —1)+wv(n),Vnel...d,/2
where x4(n) is the n'™ state variable of x; and indices follow
periodic boundary conditions: x4(—1) = x4(d, — 1), 24(0) =
z(dy) and xy(d, + 1) = x4(1).
d, =40, F =8, v(n) ~ N(0,1) and xy ~ N(0,0.01 x I).
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Contributions

¢ Online and automatic partitioning of high
dimensional state spaces for BPF'.

e Revisiting the state space partitioning problem
as a clustering problem.

e Using the state correlation matrix estimated
from predicted particles as similarity matrix

tor SC.

e Adding a constraint to prevent SC from
creating too large blocks.



