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Motivation

• To overcome the curse of dimensionality of the
particle filter (PF), the block PF (BPF)
proposed by Rebeschini and Van Handel [1]
consists in partitioning the state space into
several blocks of smaller dimension.

• But the authors provide no method to decide
how to split the state space into blocks. This
work is an attempt to fill this gap.
⇒ We propose a partitioning method
to provide a relevant partition to use
in the BPF.

Block particle filtering [1]

A blocking step is inserted between the prediction
and correction steps of the usual bootstrap PF.
• Partition into K blocks:
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where xt,k = {xt(i) : i ∈ Bk}. The subsets of
indexes {Bk}K

k=1 verify: ∪K
k=1Bk = {1 : dx} and

Bk ∩ Bk′ = ∅, ∀k ̸= k′.
• Approximation of the K marginal

densities of each block using local
weights:
The correction and resampling steps are
performed independently on each block.

• Approximation of the joint filtering
distribution by the product of the
marginal densities.

Bias and variance of the filtering distribu-
tion estimate:
• The variance is reduced using blocks of small

dimension.
• But a bias is introduced by the approximation

itself and by breaking inter-block correlation
(especially at boundaries).

⇒ How to partition the state space ?

A new state space partitioning
method for block particle filtering

Objective: To mitigate the correlation loss due to
the blocking step, the aim is to bring together in the
same blocks the most correlated state variables.
Principle of our method: The state space par-
titioning problem in the BPF is revisited as a clus-
tering problem:
• State variables are seen as data points,
• Clusters are blocks,
• Correlation among variables is used to quantify

similarity between data points.

Introduction of two new steps in the BPF:
1 Estimation of the state vector
correlation matrix
The Np predicted particles provide an unbiased
estimator of the covariance matrix of the
predictive posterior pdf p(xt|y1:t−1):
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where:
x̄t = 1
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Then the correlation matrix estimate Ĉx,t is
directly derived from Σ̂x,t.

2 Constrained spectral clustering for state
space partitioning∣∣∣∣∣∣∣∣Ĉx,t

∣∣∣∣∣∣∣∣ is used as similarity matrix for spectral
clustering [2].
A constraint is introduced on the maximal cluster
size to avoid the resurgence of the curse of
dimensionality on blocks.
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Constrained spectral clustering

Spectral clustering (SC) [2] is an unsupervised learn-
ing approach which relies on two main steps: learn-
ing a new representation of the inputs, and then
applying an usual clustering approach on the trans-
formed inputs.
To prevent SC from creating large clusters, we set
an upper bound ζ on the cluster sizes.
• Compute the normalized symmetric Laplacian

Lsym from the similarity matrix
∣∣∣∣∣∣∣∣Ĉx,t

∣∣∣∣∣∣∣∣.
• Compute the K eigenvectors u1, u2, . . . , uK of

Lsym associated to the K smallest eigenvalues.
• Concatenate these vectors as columns to create

the matrix U ∈ Rdx×K and normalize the rows of
U to unit norm.

• Get the new points z̃t(i) ∈ RK from the ith rows
of U , ∀i ∈ [dx].

• Partition the new points {z̃t(i)}dx
i=1 into K

clusters B1, ..., BK using the K-means algorithm
under the constraint |Bk| ≤ ζ , ∀k ∈ [K].

Experiment results 1

We consider a linear Gaussian model:
xt = Fxt−1 + wt

yt = Hxt + vt

where dx = dy = 100, F = H = I, wt ∼ N (0, Q),
vt ∼ N (0, I) and X0 ∼ N (0, I). The matrix Q
has 10 blocks with different sizes (from 5 to 15) in
the main diagonal and is time-varying. Inside each
block, Q(i, j) = exp (−(i − j)2/100).

BPF MSE ARI
Known partition 0.8185 /

Random partition (same size blocks) 1.1466 /
Unknown partition (ζ = dx / unconstrained SC) 0.8190 0.9938
Unknown partition (ζ = 10 / same size blocks) 0.7067 0.7010

Unknown partition (ζ = 12) 0.7473 0.8701
Unknown partition (ζ = 15) 0.8070 0.9942

Table: Performance of BPFs with 10 blocks and 100 particles.

Experiment results 2

We consider a Lorenz 96 non-linear model:
dxt(n)

dt
= (xt(n + 1) − xt(n − 2)) xt(n − 1) − xt(n) + F

yt(n) = xt(2n − 1) + vt(n), ∀n ∈ 1 . . . dx/2
where xt(n) is the nth state variable of xt and indices follow
periodic boundary conditions: xt(−1) = xt(dx − 1), xt(0) =
xt(dx) and xt(dx + 1) = xt(1).
dx = 40, F = 8, vt(n) ∼ N (0, 1) and x0 ∼ N (0, 0.01 × I).
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Contributions

• Online and automatic partitioning of high
dimensional state spaces for BPF.

• Revisiting the state space partitioning problem
as a clustering problem.

• Using the state correlation matrix estimated
from predicted particles as similarity matrix
for SC.

• Adding a constraint to prevent SC from
creating too large blocks.


