

Motivation

- To overcome the curse of dimensionality of the particle filter (PF), the block PF (BPF) proposed by Rebeschini and Van Handel [1] consists in partitioning the state space into several blocks of smaller dimension.
- But the authors provide no method to decide how to split the state space into blocks. This work is an attempt to fill this gap.

 \Rightarrow We propose a partitioning method to provide a relevant partition to use in the BPF.

Block particle filtering [1]

A blocking step is inserted between the prediction and correction steps of the usual bootstrap PF.

• Partition into K blocks:

 $\mathbf{x}_{t}^{T} = [\mathbf{x}_{t,1}^{T}\mathbf{x}_{t,2}^{T}\dots\mathbf{x}_{t,K}^{T}]$

where $\mathbf{x}_{t,k} = \{x_t(i) : i \in B_k\}$. The subsets of indexes $\{B_k\}_{k=1}^K$ verify: $\bigcup_{k=1}^K B_k = \{1 : d_x\}$ and $B_k \cap B_{k'} = \emptyset, \, \forall k \neq k'.$

• Approximation of the K marginal densities of each block using local weights:

The correction and resampling steps are performed independently on each block.

• Approximation of the joint filtering distribution by the product of the marginal densities.

Bias and variance of the filtering distribution estimate:

- The variance is reduced using blocks of small dimension.
- But a bias is introduced by the approximation itself and by breaking inter-block correlation (especially at boundaries).
- \Rightarrow How to partition the state space ?

State space partitioning based on constrained spectral clustering for block particle filtering

Rui Min $^{(1,2)}$, Christelle Garnier $^{(2)}$, François Septier $^{(3)}$, John Klein $^{(1)}$

 $^{(1)}$ Univ. Lille, CNRS, UMR 9189 - CRIStAL $^{(2)}$ IMT Nord Europe, UMR 9189 - CRIStAL, F-59000 Lille ⁽³⁾ Univ Bretagne Sud, UMR CNRS 6205, LMBA, F-56000 Vannes

A new state space partitioning method for block particle filtering

Objective : To mitigate the correlation loss due to the blocking step, the aim is to bring together in the same blocks the most correlated state variables.
Principle of our method : The state space par- titioning problem in the BPF is revisited as a clus- tering problem:
 State variables are seen as data points, Clusters are blocks,
• Correlation among variables is used to quantify similarity between data points.
Introduction of two new steps in the BPF
correlation matrix The N_p predicted particles provide an unbiased estimator of the covariance matrix of the predictive posterior pdf $p(\mathbf{x}_t \mathbf{y}_{1:t-1})$: $\hat{\boldsymbol{\Sigma}}_{\mathbf{x},t} = \frac{1}{N_p - 1} \sum_{i=1}^{N_p} (\mathbf{x}_t^{(i)} - \bar{\mathbf{x}}_t) (\mathbf{x}_t^{(i)} - \bar{\mathbf{x}}_t)^{\top}$, where: $\bar{\mathbf{x}}_t = \frac{1}{N_p} \sum_{i=1}^{N_p} \mathbf{x}_t^{(i)}$.
Then the correlation matrix estimate $\hat{\mathbf{C}}_{\mathbf{x},t}$ is directly derived from $\hat{\boldsymbol{\Sigma}}_{\mathbf{x},t}$.
 Constrained spectral clustering for state space partitioning Ĉ_{x,t} is used as similarity matrix for spectral clustering [2]. A constraint is introduced on the maximal cluster size to avoid the resurgence of the curse of dimensionality on blocks.
 [1] Patrick Rebeschini and Van Handel. Can local particle filters beat the curse of dimensionality? <i>The Annals of Applied Probability</i>, 25(5):2809–2866, 2015.
[2] Androw No. Michael Jorden and Vair Waiss

[2] Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. Advances in neural information processing systems, 14:849–856, 2001.

Table: Performance of BPFs with 10 blocks and 100 particles.

Constrained spectral clustering

Spectral clustering (SC) [2] is an unsupervised learnng approach which relies on two main steps: learnng a new representation of the inputs, and then pplying an usual clustering approach on the transormed inputs.

Fo prevent SC from creating large clusters, we set n upper bound ζ on the cluster sizes.

Compute the normalized symmetric Laplacian $\mathbf{L_{sym}}$ from the similarity matrix $|\hat{\mathbf{C}}_{\mathbf{x},t}|$.

Compute the K eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_K$ of $\mathbf{L_{sym}}$ associated to the K smallest eigenvalues. Concatenate these vectors as columns to create the matrix $\mathbf{U} \in \mathbb{R}^{d_x \times K}$ and normalize the rows of U to unit norm.

Get the new points $\tilde{\mathbf{z}}_t(i) \in \mathbb{R}^K$ from the i^{th} rows of **U**, $\forall i \in [d_x]$.

Partition the new points $\{\tilde{\mathbf{z}}_t(i)\}_{i=1}^{d_x}$ into K clusters $B_1, ..., B_K$ using the K-means algorithm under the constraint $|B_k| \leq \zeta$, $\forall k \in [K]$.

Experiment results 1

Ve consider a linear Gaussian model:

$$\mathbf{x}_t = \mathbf{F} \mathbf{x}_{t-1} + \mathbf{w}$$

 $\mathbf{y}_t = \mathbf{H}\mathbf{x}_t + \mathbf{v}_t$

where $d_x = d_y = 100$, $\mathbf{F} = \mathbf{H} = \mathbf{I}$, $\mathbf{w}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$, $v_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and $\mathbf{X}_0 \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. The matrix \mathbf{Q} has 10 blocks with different sizes (from 5 to 15) in the main diagonal and is time-varying. Inside each plock, $Q(i, j) = \exp(-(i - j)^2/100)$.

BPF	MSE	ARI
Known partition	0.8185	/
Random partition (same size blocks)	1.1466	/
nknown partition ($\zeta = d_x$ / unconstrained SC)	0.8190	0.9938
Jnknown partition ($\zeta = 10$ / same size blocks)	0.7067	0.7010
Unknown partition ($\zeta = 12$)	0.7473	0.8701
Unknown partition ($\zeta = 15$)	0.8070	0.9942

Experiment results 2

We consider a Lorenz 96 non-linear model: $\frac{\mathrm{d}x_t(n)}{\mathrm{d}t} = (x_t(n+1) - x_t(n-2)) x_t(n-1) - x_t(n) + F$ $y_t(n) = x_t(2n-1) + v_t(n), \forall n \in 1 \dots d_x/2$ where $x_t(n)$ is the n^{th} state variable of \mathbf{x}_t and indices follow periodic boundary conditions: $x_t(-1) = x_t(d_x - 1), x_t(0) =$ $x_t(d_x)$ and $x_t(d_x + 1) = x_t(1)$. $d_x = 40, F = 8, v_t(n) \sim \mathcal{N}(0, 1) \text{ and } \mathbf{x}_0 \sim \mathcal{N}(\mathbf{0}, 0.01 \times \mathbf{I}).$

Contributions

- Online and automatic partitioning of high dimensional state spaces for BPF.
- Revisiting the state space partitioning problem as a clustering problem.
- Using the state correlation matrix estimated from predicted particles as similarity matrix for SC.
- Adding a constraint to prevent SC from creating too large blocks.