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Abstract

We introduce a recursive methodology (based on [1]) for Bayesian in-
ference of a class of multi-scale systems (with variables that work at dif-
ferent time scales). The proposed scheme combines three intertwined
layers of filtering techniques that approximate recursively the joint poste-
rior probability distribution of the parameters and both sets
of dynamic state variables given a sequence of partial and noisy ob-
servations.

State-space Model

We consider a class of multidimensional stochastic differential
equations (SDEs) that can be written as

dx = fx(x,θ)dτ + gx(z,θ)dτ +Qxdv, (1)
dz = fz(x,θ)dτ + gz(z,θ)dτ +Qzdw, (2)

• τ denotes continuous time,
•x(τ ) ∈ Rdx and z(τ ) ∈ Rdz are the slow and fast states of the system, respectively,
• fx, gx, fz and gz are drift functions parameterized by θ ∈ Rdθ,
•Matrices Qx and Qz are diffusion coefficients,
• and v(τ ) and w(τ ) are vectors of independent standard Wiener processes.

Dynamical Model

We apply a macro-micro solver that runs an Euler-Maruyama
scheme for each set of state variables with different integration steps
(∆x� ∆z):

xt = xt−1 + ∆x(fx(xt−1,θ) + gx(z̄t,θ)) +
√

∆xQxvt, (3)
zn = zn−1 + ∆z(fz(xbn−1

h c
,θ) + gz(zn−1,θ)) +

√
∆zQzwn, (4)

where t ∈ N denotes discrete time in the time scale of the slow variables,
n ∈ N denotes discrete time in the fast time scale and

z̄t = 1
h

ht∑
i=h(t−1)+1

zi. (5)

The observations are available only in the (slow) time scale of x:
yt = l(zht,xt,θ) + rt. (6)

Nested Smoother

We aim at performing joint Bayesian estimation of the parameters, θ, and
all states, x and z by approximating the posterior pdf

p(zht,x0:t,θ|y1:t) = p(zht|x0:t,y1:t,θ)p(x0:t|y1:t,θ)p(θ|y1:t) (7)

1st layerp(θ|y1:t) ∝ p(yt|θ,y1:t−1)︸ ︷︷ ︸
likelihood of θ

p(θ|y1:t−1)︸ ︷︷ ︸
posterior pdf at t−1

2nd layer
p(yt|θ,y1:t−1) =

∫ likelihood of θ and x0:t︷ ︸︸ ︷
p(yt|x0:t,y1:t−1,θ) p(x0:t|y1:t−1,θ)︸ ︷︷ ︸

joint predictive pdf of x0:t

dx0:t

3rd layer
p(yt|x0:t,y1:t−1,θ) =

∫ likelihood of θ, xt and zht︷ ︸︸ ︷
p(yt|zht,xt,θ)

× p(zht|x0:t,y1:t−1,θ)︸ ︷︷ ︸
predictive pdf of zht

dzht

In the second layer, the joint predictive pdf of x0:t is computed as
p(x0:t|y1:t−1,θ) = p(xt|x0:t−1,y1:t−1,θ)p(x0:t−1|y1:t−1,θ), (8)

and in the third layer we can compute p(xt|x0:t−1,y1:t−1,θ) as
p(xt|x0:t−1,y1:t−1,θ) =

∫
p(xt|zh(t−1)+1:ht,x0:t−1,y1:t−1,θ)
× p(zh(t−1)+1:ht|x0:t−1,y1:t−1,θ)dzh(t−1)+1:ht.

A Stochastic two-scale Lorenz 96 Model

•The system is described, in continuous-time τ , by the SDEs

dxj =
− xj−1(xj−2 − xj+1)− xj + F − HC

B

Rj−1∑
l=(j−1)R

zl

dτ + σxdvj,

dzl =
− CBzl+1(zl+2 − zl−1)− Czl + CF

B
+ HC

B
xb(l−1)/Rc

dτ + σzdwl,

Let us assume there are dx slow variables and R fast variables per slow
variable, and θ = (F,H,C,B)> ∈ R are static model parameters.

•The discrete-time state equations can be written as
xt+1,j = xt,j + ∆x(fx,j(xt,θ) + gx,j(z̄t+1,θ)) +

√
∆xσxvt+1,j, (9)

zn+1,l = zn,l + ∆z(fz,l(xbnhc,θ) + gz,l(zn,θ)) +
√

∆zσzwn+1,l, (10)
where

xt = (xt,0, . . . , xt,dx−1)> and zn = (zn,0, . . . , zn,dz−1)>.

•We assume that the observations are linear and Gaussian, namely,

yt = At

xt
zht

 + rt, (11)

where At is a known dy × (dx + dz) matrix and rt is a dy-dimensional
Gaussian random vector with known covariance matrix.

Computer simulations

A variety of techniques (Monte Carlo or Gaussian filters such as EnKF,
EKF and UKF) can be used in any layer of the filter. For this experiment
we have implemented a SMC-EnKF-EKF.

Integration step ∆x = 10−3 and ∆z = 10−4

Variables parameters dx = 10, R = 5 and dz = 50
Fixed model parameters F = 8, H = 0.75, C = 10 and B = 15
Noise scaling factors σ2
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Figure: Posterior density of the parameters (dashed lines) at time τ = 20. The true values
are indicated by a black vertical line.
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Figure: Sequences of state values (black line) and estimates (dashed red line) in x1 and z1
over time.

Summary of contributions

•We have introduced a recursive and multi-layer methodology that
estimates the static parameters and the dynamical variables of a class of
multi-scale state-space models.

•The inference techniques used in each layer can vary from Monte Carlo
to Gaussian techniques, leading to different computational costs and
degrees of accuracy.

•We have implemented a SMC-SMC-UKF and a SMC-EnKF-EKF that
have obtained good results in terms of accuracy.
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